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The effect of turbulence on the structure of weak shock waves is investigated. 
The equilibrium structure is shown to be governed by a balance between nonlinear 
steepening and the turbulent scattering of acoustic energy out of the main wave 
direction. The scattered energy appears as perturbations behind the shook front. 
For conditions typical of sonic booms in atmospheric turbulence the wave struc- 
ture is governed by a Burgers equation similar to that describing viscous shocks, 
except that parameters related to the turbulence appear instead of the viscosity 
coefficient. The magnitude of the perturbations following a shock is estimated 
from first-order scattering applied to a thickened shock. Predictions of shock 
thicknesses and perturbations compare favourably with available experimental 
data. The approach used in the analysis of shook structure is to account for energy 
scattered from a single wave propagating a long distance through turbulence. 
This avoids difficulties of physical interpretation which arise if an ensemble- 
averaged structure is calculated, which is the usual approach in turbulent scatter- 
ing analysis. 

1. Introduction 
The propagation of weak pressure waves through turbulence modifies the 

wave shape and structure compared with those for the non-turbulent case. These 
effects have been observed in sonic boom signatures and other weak shock waves. 
For example, sonic-boom theory for a stratified atmosphere predicts signatures 
consisting of very thin viscous shocks connected by slow pressure changes, 
usually expansions. However, experimental observations in the real turbulent 
atmosphere (Maglieri 1967, 1968; Garrick & Maglieri 1968; Reed 1969) usually 
exhibit two additional features. 

Random perturbations and spikes are superimposed on the basic wave shape 
and the shock thicknesses are of order lo3 times those predicted using ordinary 
visoosity and heat conduction. These effects are shown in figure 1. Note that 
except for the random perturbations and excessive shock thickness that the 
experiments agree quite well with the non-turbulent predictions. Tests made 
with microphones placed on tall towers and balloons (Maglieri 1967) have in- 
dicated that most of the perturbations of the wave shape originate in the lowest 
few thousand feet of the atmosphere. The magnitudes of these perturbations 
correlate qualitatively with the level of turbulence one would expect in the 
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FIGURE 1. Typical fight test measurements for two different meteorological conditions. 

From Hilton, Huckel & Maglieri (1966). (a )  Low wind velocity. (b )  Strong gusty wind. 
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FIGURE 2. Schematic representation of scattering. 
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atmospheric boundary layer from the meteorological conditions during the tests. 
The perturbations behind the front and rear shocks of sonic-boom signatures are 
identical for a given signature. The time between the two shocks is small com- 
pared with time scales of atmospheric turbulence, so that both shocks encounter 
essentially the same turbulence. 

The phenomena of thickening and perturbations are therefore associated with 
weak shock waves propagating through turbulence. In  this paper, the problem 
of a weak plane shock wave propagating through homogeneous turbulence will 
be considered. 

An appropriate method for examining weak waves in weak turbulence (at- 
mospheric turbulence generally being weak) is scattering theory. Scattering 
theory is a perturbation scheme in which the strength of the turbulence, E ( E  < I), 
is used as the expansion parameter. A solution for the wave overpressure is sought 
in the form 

p = po+Epl+E2p2+ ... . (1) 

The first term po  corresponds to propagation without turbulence and is called the 
incident wave. This does not quite satisfy the equations of motion at  the in- 
homogeneities associated with the turbulence. The interaction of the incident 
wave with each inhomogeneity acts as an acoustic source, radiating a wave of 
strength E which decays like l / r  (r = distance from the source). This is illustrated 
schematically in figure 2. The incident wave is shown as the straight line, and 
the circles represent the scattered waves from several sources. The contribution 
from each source, to first order in E ,  is integrated over the turbulent region (‘scat- 
tering volume ’) to give epl. Dropping terms of higher order than epPl is called the 
Born approximation. 

In  an analysis based upon first-order scattering by turbulence, Crow (1968, 
1969) has explained many of the characteristics of the random perturbations 
of the observed wave. Crow modelled the incident shock as a step-function 
acoustic wave. His results therefore include scattering of very high frequency 
components in the assumed incident wave. First-order scattering theories based 
on a harmonic incident wave show that high frequencies are very strongly scat- 
tered at  small scattering angles (Chernov 1960; Tatarski 1961; Batchelor 1957; 
Lighthill 1953). As a result, the generally reasonable values predicted by 
Crow’s analysis become enormous near the shock front, whereas the actual 
observed perturbations reach a finite maximum. In  order to predict the 
maximum mean-square perturbations correctly, the thickened shock structure 
must be included. Crow noted this and surmised that a second-order theory 
would be necessary to find the shock structure. 

It is, indeed, necessary to use a second-order theory to explain shock thickening. 
First-order scattering is linear in the turbulence, which is taken to be random with 
zero mean, and any average of a first-order quantity is therefore zero. The 
phenomenon of thickening has a non-zero mean, as shocks are always observed 
to thicken relative to those for the non-turbulent case. Thus first-order scattering 
alone cannot account for thickening, and the scattering analysis must be carried 
through to at  least second order. 

Second-order scattering corresponds to the term s2p2 in (1). It represents 
29-2 
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waves ‘first scattered’ from epl plus any other second-order effects. In  particular, 
the first scattered waves carry with them energy of order e2, so that the solution 
up to ezpz for the emergent wave in figure 2 must include a reduction in energy 
from that of po,  the amount of reduction corresponding to the energy contained 
in epl. This dissipation is stronger for high frequencies, so that the high frequency 
components of the incident waves are more strongly attenuated. 

In  a previous paper by the authors (George & Plotkin 1971) in which only 
turbulent sound speed fluctuations were considered, thickening of the shocks was 
shown to be due to this scattering of the higher frequency components out of the 
incident wave direction. In  the present paper the analysis is extended to include 
turbulent velocity and density fluctuations. A preliminary version of this ex- 
tension was presented at the 1970A.I.A.A. Aerospace Sciences Meeting (Plotkin 
& George 1970). The effect of shock thickness on the perturbations will also be 
briefly considered. 

Because turbulent scattering is a random process, statistical results are usually 
sought, generally in the form of ensemble averages. This is the approach used by 
Howe (1971a, b)  and Cole & Friedman (1971) in their investigations of shock 
structures in turbulence. However, the use of an ensemble average is not entirely 
satisfactory for describing shock waves; experimental observations are of in- 
dividual waves, not ensemble averages. An ensemble average may display 
features which are never seen in an individual occurrence. For example, an 
ensemble average of coin tossing might lead us to believe that each side of a coin 
is half heads and half tails. In  the case of shock waves, an ensemble average of 
waves with random arrival times may appear to have a thicker structure than 
any one wave (George 1971). A more satisfactory approach, used in this paper, is 
to  base the decay of the incident wave on a balance of first scattered energy. 
In  this way, the structure of an individual shock wave may be found. The energy- 
balance approach has the further advantage that energy scattered from the 
shock front is more readily related to the perturbations behind the front. This is 
important in determining when a thickened shock structure may exist. It will 
be shown that such a structure exists only when the propagation distance through 
turbulence is long enough for the first scattered energy (the perturbations) 
to have fallen behind the front. 

For finite amplitude waves nonlinear effects must be included. These tend 
to make the wave steepen, thus counteracting the broadening of the wave due to 
the dissipation discussed above. In  the next section an approximate partial 
differential equation governing the wave structure (less the first-order perturba- 
tions) is derived for conditions where dissipation due to scattering and weak 
nonlinear steepening is the dominant effect. The physical description of such 
a shock is analogous to that of a viscous shock except that here the dissipated 
energy is turned into random wave motion behind the shock (the perturbations), 
while in the viscous case the dissipated energy is turned into random molecular 
motion (heat) behind the shock. 
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2. Analysis 
Consider small disturbances of a medium with constant mean properties and 

random fluctuations in sound speed, density and velocity (zero mean velocity). 
Pressure, density, velocity and sound speed are written as p ,  +p,  p a  +pT +p, 
uT + u and a, + aT + a. The subscript co denotes the undisturbed mean, the sub- 
script T denotes random variations from the mean (turbulence) and unsubscrip- 
ted quantities are perturbations associated with wave motion. Gravity is neglec- 
ted and the turbulent Mach number (lu,l>/a, is assumed small, so that pT M 0. 
It is also assumed that the time scale of the turbulence is much larger than that 
of the wave motion, so that a( ),/at may be taken as zero. 

The mass and momentum equations for this system are 

ap/at+ (UT + u) .  V p  + ( p m  +pT + p )  (a, + aT + a) ,  V .  (u,+ U) = 0, 

au/at+ (uT+u)*V(UT+U) +Vp/ (~m+pT+p)  = 0. 

( 2 ~ )  

( 2 b )  

The energy equation in the form DS/Dt = 0 has been used to eliminate p deriva- 
tives and the ideal gas law is assumed. 

The turbulent quantities are taken to be 

aT = €amp, pT = ep, v, uT = earn U, (3% b, 4 
where ,LA, v and U are random functions of space with zero means, and e < 1. 
The wave overpressure is taken to be of order S relative to the ambient pressure, 
8 4  1. 

The gradient of ( 2 b )  may be subtracted from the time derivative of (2a)  to 
give a single inhomogeneous wave equation. To third order in e and 6, the wave 
equation may be written as 

where S1(p) = 2epV2p - eVv. V p  + 2cpp,a,V. (U .Vu) = O(S), 

s, = O(S€2), 

+V.(pau/at)+p,V.(u.Vzl) = O ( P ) ,  

S,N, = o(s+), iv3 = o(~3) 

(see Plotli.in 1971 a). 
To allow for the finite amplitude of the waves the expansion introduced as 

equation (1) is generalized to include 6 as well as E .  If at  a given time a portion of a 
plane wave is given by p = Sp,, (x - a,  t )  the following expansion is assumed for 
the pressure a short time later: 

p = Sp1, + S€P,, + 6c2p1, + Pp,, + Pep21 + 63p3, + . -. . (5 )  

Note that the indexing is such that pij  is preceded by the factor S i B .  
It should be pointed out that (5) is merely an explicit statement of the expan- 

sion implicitly assumed in the usual acoustic scattering analyses. The usual 
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expansion ( I )  is based on the acoustic equations, which are the first terms of an 
expansion in 6. Because higher-order terms in 6 are important in the present 
problem, the two-parameter expansion is used explicitly. 

On using (5) in the wave equation (4), and separating powers of e and S, the 
following set of wave equations is obtained: 

O2P1o = 0, D P l l  = 4PlOL (6a,b) 

O”12 = fil(P11) + UPlO) ,  O2P20 = N2(1310), (6c, 4 
0 2 P 2 1  = ~ 1 ~ 2 ( P l O ~ ~ ~ l )  + 5 1 ( P 2 0 ) ,  O2P30 = N3@103P20) ,  (6e9.f) 

and so on. The solutions to these first six equations represent the incident wave, 
first-order scattering, second-order scattering (which includes energy loss due to 
first scattering), lowest-order nonlinear steepening, combined scattering of 
lowest-order nonlinear effects with steepening of first-order scattered waves, and 
third-order nonlinear effects. The right-hand side of each equation depends only 
on the solutions to the equations preceding it, so (6) may be solved sequentially 
for a given incident wave Splo. The solution to any inhomogeneous wave equation 

EI2p = Q(x, t )  

is given by the retarded time integral (Born & Wolf 1964) 

Thus, the solutions to (6) are known in principle. The solution for p is the super- 
position of these various solutions, with the series truncated at  some point. 

The series solution (5) is only valid when the various solutions to (6) are small 
compared to 6pl0; this implies a limit on propagation distance. The solution for 
longer propagation distances can be obtained by re-initializing after a short 
distance: after obtaining the solution over a distance short enough for the 
perturbations about Splo to be small, the solution emerging from this layer is 
used as Splo for the next. This can be accomplished by seeking a differential 
form of (5), where the difference quotients are formed over a distance small enough 
for small perturbations to be valid. The conditions required for this successive 
layer concept to be valid will be examined. 

The various solutions of (6) are considered to be written in terms of co-ordinates 
= IL” - a, t and t fixed relative to the wave and are inserted into (5). It is desired to 

truncate the series at the earliest possible point at  which it contains enough terms 
to describe the shock wave. In  a steady or near steady wave, nonlinear steepening 
tends to make the wave thinner while dissipation tends to thicken it. The trun- 
cated series must contain these two effects. The lowest-order steepening term is 
rS2p2,, and the first term representing dissipation is Se2p12, which corresponds to 
second-order scattering. Further terms in (5) are smaller than one of these two. 
In  a steady shock these two terms are balanced, so the series may be truncated at 
this point. In  a shock wave which is not near its steady state these two terms are 
not of the same magnitude. Whichever is the larger will be the important one in 
determining the evolution of the shock structure, so the series may be truncated 
after that one. Retaining the other will do no harm, as it is of smaller magnitude, 
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and further terms in the series are still not important. Retaining only the largest 
steepening term and the largest dissipation term is consistent with the method 
of derivation of the usual viscous shock structure, such as the analysis by Light- 
hill(1956). 

As was pointed out above, &pll is not explicitly involved in the shock structure. 
This term represents random perturbations superposed on the mean structure. 
It is desired to derive an equation describing p without considering these. 
Defining 

p = p - ~ ~ P l l ’  (8) 

an equation for P will be derived. This approach of removing the first-order 
perturbations is used rather than ensemble averaging (noting that (8epll) = 0) 
because measurements of shock thickness are for single shocks, not ensembles. 
Any variation in arrival time for different members of an. ensemble (essentially 
a random walk about the mean arrival time) may result in an apparent thickness 
in an ensemble average which is larger than the thickness of any one shock. The 
calculation of such an apparent thickness, which is not physically real for an 
individual shock, is discussed in detail by George (1971). Making this distinction 
of calculating Prather than(p), and keeping track of the location of the scattered 
energy, is vital if we are to be fully justified in interpreting our final result as a 
decay. For example, in two recent papers, Howe (1971 a, b )  has treated the passage 
of waves through turbulence by considering the ensemble average of the waves. 
His final result for short waves, applied to shallow-water bores, is essentially the 
same as our final result for shock structure. He also provides some justification 
for applying second-order scattering theory to cases where scattering is not weak. 
However, in our approach we have found certain important additional restric- 
tions on the application of this structure. Also, in Howe’s analysis of a stretched 
string, what he interprets as a decay in the ensemble average can be shown to be a 
random phase shift of the members of the ensemble making up the coherent 
wave, and not a decay for any one realization. 

Truncating (5) after the fourth term, using (8) and taking the time derivative 
at  constant 5 yields 

The solutions 8p2,/8t and ap,,/at must now be found. The nonlinear steepening 
term ap,,/at may be found by applying the retarded time integral (7) to ( 6 4 .  
Because p,, is a plane wave the integration is fairly straightforward, giving 

Alternatively, the second-order correction of Whitham (1956) can be applied 
to the plane incident wave to give exactly the same result. 

The second scattering term apl,/at is the solution to ( 6 b )  and (6c). These are the 
usual equations for second-order acoustic scattering and are linear in 8plo. The 
solution will therefore be some linear operator 9, say, acting on aplo. The scatter- 
ing sources depend on the turbulence, so 9 depends on spatial location and the 
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particular realization of the turbulence. Thus, 

(11) 
where ‘x’ and ‘realization’ reflect the dependence of 9 on the local turbulence. 

It is not generally possible to find 9 as it stands because only the statistical 
properties of the turbulence are known. Therefore it is necessary to make some 
sort of approximation and seek a statistical result. If the scattering is weak 
enough, so that p changes little over a propagation distance of many macroscale 
lengths Lo, i.e. 8e2i?pl2/at < Sploaao/L0, and a solution is sought for long propa- 
gation distances, then it is reasonable to approximate 9 by its spatial average 
with [ fixed: 

9 g 3 = lim -1 g ( 8 p l 0 ( ~ ) ;  x + x’, realization) dx’. 

By averaging over the propagation distance we shall be averaging out the 
fluctuating parts of 9 but keeping any mean change in the wave shape. We 
next assume that the turbulence is locally homogeneous and that the members 
of the ensemble of realizations are statistically equivalent (regular) in order to 
make the ergodic-type hypothesis 

where ( )  denotes the ensemble average. Physically, this implies that the 
x-averaged energy scattered in one realization is equal to the average energy 
scattered in an ensemble of realizations. Thus, 
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Se2 ap,,/St = g (8plo(LJ, x, realization), 

1 A  

A - m 2 A  -A 

3= @), 

8e2 aPl2lat (9(8PlO)).  (12) 

Recall that Spl0 = P [ l  + O(s )  + O(S)] and that S2 apzo/at and Se2 ap12/at are the high- 
est-order terms being considered. The incident wave 8plo may therefore be re- 
placed by P in (10) and (12) with no further loss in accuracy. Using these in (9) 
gives 

Attention is now devoted to finding ( 9 ( P ) ) .  As already explained, (9) 
accounts for the loss of energy to first scattered waves. In  addition, there may be 
dispersive or other effects which might not show up in an energy balance. These 
could only be found from a full second-order scattering analysis. George & Plot- 
kin (1971) and Plotkiii (1971a) have applied a second scattering solution due to 
Keller (1962) for the case of sound speed inhomogeneities only to show for that 
case, and for waves of thickness IT small compared with the macroscale Lo, that 
dispersive and other effects were small compared to dissipation. Because of the 
similarity of the scattering sources, it is expected that this is also true for the 
present more general case, which includes scattering from density inhomo- 
geneities and velocity turbulence. This greatly simplifies the calculation of (9) 
for T < Lo. A full second-order analysis was not carried out as the dissipation 
alone can be obtained from a simple energy balance based upon well-known first- 
order scattering formulae. These are generally derived for single frequency har- 
monic waves. Since (9) is a linear operator we may apply a single frequency 
analysis to each E’ourier component of the shock structure. The form of (9) will 
therefore first be found for a harmonic wave. 
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Consider a scattering volume which is a cube of side L, and a harmonic incident 
wave B,exp [ik(x-a,l)] normal to one of the faces of the cube. The emergent 
wave from the opposite face is Bexp[ik(x-a,t)]. The first scattered waves 
propagating in the direction defined by the unit vector ii are given by ~ b ( f i )  x 
exp [ilc(fi. x - a,t)]. The energy flux of a harmonic wave is proportional to its 
amplitude squared. On balancing the mean energy flux into and out of the cube 
to second order in e, one obtains 

(pol 2) L2 = (IBI 2) L2 + s, €?lblZ) ii . d s ,  

where d s  is an element of the surface of the cube. The change in intensity of 
B exp [ik( x - a, t ) ]  over a distance L is thus 

The incident wave propagates for a time Lla,, in which it travels a distance L. 
Considering B exp [ik(x - a,  t ) ]  to be written in the co-ordinates (E ,  t)  fixed with 
respect to the wave, we have 

Since the fractional change in (B)  is assumed small over the time Llu,, 

a(B) 1 a ( l m 2  
at 2 at * 

- -- 

The reduction in ( B )  is the decay identified witE second soattering, given by the 
operator (9). Thus, from (14), 

The mean second scattering operator is thus given by this integral of the mean 
first scattered intensity. 

First-order Scattering is governed by (6a) and ( 6 b ) .  The solution to (6a) is 
the incident wave, here taken to be a plane wave travelling in the x direction. 
For the plane incident wave Splo(x - a,t): equation ( 6 b )  becomes 

where $ = ?I,, the turbulent velocity component parallel to the incident wave 
direction. The first term on the right-hand side represents scattering by sound 
speed (index of refraction) variations, the second that by density variations and 
the third and fourth that by turbulent velocity fluctuations. Because of the simi- 
larity between the first and third, and the second and fourth terms, if the problem 
is solved first for sound speed and density scattering, velocity scattering can be 
added to the solution simply by letting p -f p + @ and v --f v - 2@. The equation 
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This may be solved by applying the retarded time integral (7).  The solution at a 
large distance from the scattering volume is well known. For homogeneous iso- 
tropic turbulence, using the notation of (14) and (lq, this may be written as 

e2B2L3k4 [ (,u2) 1 
E2( I b 12) = Npp(r) sin (2kr sin i0) dr 

R22k sin $0 0 

+ 2 ( p v )  sin2 &e]om N&r) sin (2krsin 40) dr 

+ ( v2 )  sin4+B[oa NJr)  sin (2kr sin 40) dr , I (18) 

where R is the distance from the centre of the cube, 0 is the scattering angle 
(angle between the scattered wave direction and incident wave direction) and 
k is the wavenumber of the incident wave. The correlation functions are defined 
bv 

The three correlation functions are used so that ,u and v need not be related to 
each other in any specific way. This is necessary when extending (18) to velocity 
turbulence by ,u -+ ,u + $ and v -+ v - 2$. With the addition of this generalization, 
the analysis leading to (18) follows that of Chernov (1960). 

Equation (18) is valid only in the Fraunhofer zone R 9 L2/h(h = 27r/k). (Note, 
however, that the total energy is the same in the near or far field.) It also 
includes the assumptions of weak scattering, locally homogeneous isotropic tur- 
bulence and L 9 Lo. These three assumptions have already been used in approxi- 
mating D by9 .  Scattering intensities predicted by ( 18) have been experimentally 
verified by Kallistratova (1959) and Kallistratova & Tatarski (1960). The turbu- 
lence model employed therefore appears to be reasonabIe. 

We evaluate the energy scattered out of the cube on a sphere of radius 
R L where the propagation direction of the first scattered waves is radially 
outward. Spherical co-ordinates R, 0, q$ are adopted, q5 being the azimuthal 
angle. Owing to isotropy there is no dependence on q$, and for large R 

h.ds = 2nR2sinOd0, (20) 

where 0 varies from 0 to 7r. Substituting this and (18) into (15), noting the 
trigonometric relation sin B = 2 sin 40 cos $0 and carrying out the integration 
over B yields 

(9 (Be t@))  = - e2am k 2  <,u ) NJr)  (1 - cos 2kr) dr l o m  
+ 2 ( p v ) / o  Np”“1[2(kr) (2Er) sin 2kr - ( (2kr)2  - 2 )  cos 2kr - 21 dr 

Nvy(r) [ - ( 2 I ~ r ) ~  cos 2kr + 4((3(2kr)2  - 6 )  cos 2kr +qo (2kr)4 
+ ( (2kr)z -  6 (2kr ) )  sin 2kr + 6 ) ]  dr (21 )  



Propagation of weak shock waves 459 

Details of the first 6' integral, the (p2) part, may be found in Chernov (1960). 
The (pv) and (v2)  integrals were obtained by integrating by parts twice and four 
times respectively. 

For large kLo, ( 9 ( B  eikt))  N - e2a, k2(p2) Lo B eikt, (22) 

where the macroscale Lo is defined as 

The assumption leading to (22)  is that kLo $ 1, i.e. the wavelength must be 
small compared with the turbulent macroscale. It should be noted that (22) takes 
the same form as for viscous dissipation, with a different coefficient, so that 
the shock structure will be qualitatively similar to the well-known Taylor 
shock structure, but will have a different (and, as will be seen, much larger) 
thickness. It should also be pointed out here that Lighthill (1953) obtained 
a result equivalent to (22) for the same limit of large k, except that isotropy was 
not required. When (22) applies, therefore, the turbulence need not be isotropic. 
For the present analysis, however, assuming isotropy made possible the calcula- 
tion of the smaller terms in (21) so that their magnitude could be estimated. 

It is straightforward, but lengthy, to apply (21) to each Fourier component of 
the shock structure P(5, t ) .  On doing so, the following is obtained: 

where denotes the indefinite integral with respect to 5. In  atmospheric 

turbulence @2), (pv) and ( v2 }  are of comparable order and X',, Np,, and N,,, have 
similar behaviour. These factors will thus be treated as comparable in estimating 
the relative magnitudes of the above terms. 

The second term of D,, and the first terms of D,, and D,, can be shown to be of 

f, 
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order T/L, compared with the first term of D,, by interchanging the differentia- 
tion and integration, integrating by parts, and then finding upper bounds by 
using Sy ” ( g - ’ ) P ( t - - t ’ ) d & ’  6 IPm.xlJ--m --m p’(*t’)lw. 

-a 

The remaining terms of D,, and D,, have been shown by Plotkin (1971 a)  to be 
of order TILO. Thus 

( g ( P ) )  = ~~{ ,u2)L  a - 1 + O  - . 
O a:;[ (f)] 

The dispersive effects discussed by George & Plotkin (1971) and Plotkin 
( I971  a )  may be shown to be of the order T/Loby a similar approach. For T/Lo < 1, 
only the leading term of 9 is important. This single term alone would be obtained 
by applying ( 2 2 )  to a thin shock. This is to be expected since a shock thickness T 
is described by Fourier components k M l / T ,  so that the condition T < Lo is 
equivalent to k 3 l/Lo. 

Typically, Lo is of the order of hundreds of feet for atmospheric turbulence 
(Lumley & Panofsky 1964; Busch & Panofsky 1968), while observed shock thick- 
nesses are from one to ten feet. Thus only the leading term of 9 need be used to  
calculate the structure of these shocks. With ,u replaced by ,u + @ to include velo- 
city turbulence (note that v is no longer important when T < Lo), (13) becomes 

Except that e2((,u + +)2) Loua replaces %yv, where 7 = kinematic viscosity, 
this is the same Burgers equation as that governing weak viscous shocks. This 
is the same result as that obtained by George & Plotkin (1971) for sound speed 
fluctuations alone, except that ,u++ appears here instead of ,u. The effect on 
shock structure of velocity turbulence is thus, to this approximation, the same 
as that of sound speed variations. 

3. Limiting assumptions 
At this point we review the assumptions made in developing (27). 
(i) In  order to use the basic expansion in 6 and E we need 6 and E small enough 

so that successive terms in the series ( 5 )  decrease, allowing the sequential solution 
of (6). The analysis uses an average value of p I 2 ;  thus each layer over which the 
analysis is applied must be several correlation lengths long. At the same time, 
however, the total first scattered wave &p,, must be small compared with Splo 
for the expansion in E to be valid. Scattering is strongest for the highest frequency 
components of a wave. For a wave of thickness T the highest frequency com- 
ponents have wavenumber k M l / T .  From ( 2 2 )  the condition for weak scattering 
is thus seen to be 

where here L is several times Lo in order to allow the statistical treatment of the 
waves. The total propagation length is considered as being made up of a number 
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of layers with ‘ re-initializing ’ taking place after each layer, as was described 
previously. 

(ii) We have modelled the turbulence as locally homogeneous and isotropic. 
On the largest scales atmospheric turbulence is neither homogeneous nor isotropic 
but the loss of accuracy in our case is expected to be small in the limit Lo B 1, 
as was discussed following (23). 

(iii) We have considered the averaged effect of second-order scattering, and 
have approximated this effect for T/Lo < 1 using an energy balance verified for 
this limit in our earlier work treating sound speed fluctuations alone. 

(iv) We have considered the variable P ,  which is the wave pressure less the 
first-order perturbations &pll. Since, as was just mentioned, we have also taken 
the average of the effect of &pY., our P should be considered as a mean shape 
taken over the propagation distance of the wave less the random perturbations. 
However, if the first-order perturbations are to be recognized in an experiment 
as being separate from the shock wave front they must have lagged far enough 
behind the initial wave for their phase to be distinct from the wave components 
making up the initial front. High frequency waves are scattered primarily at  an 
angle to the incident wave of order 2(kLO)-l. For waves propagating at  such an 
angle to have lagged at least one half wavelength, one requires hLILi 2 n2, where 
L is the propagation distance. Similar estimates can be made considering non- 
linear effects and are discussed by Plotkin (1971a). 

If the scattered energy within some cone of angle 8, is not distinct this may be 
allowed for in the energy balance by using 6, instead of 0 for the lower limit in 
the integrations in (18). If this is carried through for the same approximations 
as those leading to (27) the following is obtained (Plotkin 1971 a)  : 

This result is not directly applicable, as the choice of 60 is not fixed but depends on 
L, the total distance travelled from the scattering region. However, the be- 
haviour of (29) is qualitatively similar to that of (27). This demonstrates that the 
physical description developed here is correct even when the approximations 
leading to the Burgers equation (27) are not strictly applicable. Shock structures 
will not be calculated from (29). 

4. Application to sonic booms in the atmosphere 
Before calculating shock thicknesses from this result it is necessary to see when 

the various assumptions made are applicable. Much of the current interest is in 
sonic-boom shock waves. Observed amplitudes are typically Ap/pm = 0.5 x 
and measured shock thicknesses are about 1 to 10feet. Atmospheric turbulence is 
generally inhomogeneous, varying strongly with height, and is perhaps most 
satisfactorily described by spectra or by structure functions. However, owing to 
the increased effectiveness of large eddies in scattering, the macroscale Lo appears 
naturally in our results. The value of Lo increases approximately linearly with 
altitude through the atmospheric boundary layer while the value of e2 decreases. 
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FIGURE 3. Comparison of predicted shock thicknesses with experimental data. 1, Reed 
(1969); 2, Msglieri (1968); 3, Maglieri, Huckel, Henderson & McLeod (1969); 4, Garrick 
& Maglieri (1968). -, T,; ---, T (3000ft layer). 

Using data presented by Busch & Panofsky (1968), Lumley & Panofsky 
(1964) and Tatarski (1961), as discussed by George & Plotkin (1971), we estimate 
typical turbulent daytime values of e2 to be in the range 10-7-10-6 with Lo 
ranging from several feet near the ground to values of the order of lo3 ft near the 
top of the atmospheric boundary layer. 

We now check the various assumptions : 
(i) 6 and e are certainly small. Next, consider the condition (28) with L several 

times Lo. Noting that large e2(,u2) Lo corresponds to large T ,  this result can gener- 
ally be satisfied for the values of e2, Lo and To being considered. 

(ii) The error due to the anisotropy and inhomogeneity of the atmosphere is 
expected to be small, particularly compared with that in estimating the turbulent 
parameters themselves. 

(iii) Except for the last few hundred feet near the ground the condition T < Lo 
is met. Experiments with microphones placed on towers (Magleiri 1967) indicate 
that sonic-boom signatures do not change appreciably in this last few hundred 
feet, so that the main effect of turbulence on sonic-boom signatures is at  higher 
elevations where this condition is valid. This is also true for long-distance blast- 
wave propagation, where ray paths are refracted through high altitudes owing 
to the mean gradients in the atmosphere. 

(iv) ALIL; 2 n2 requires quite large L when Lo is large. By using a value of A 
of order 3 ft, we see that for Lo from, say, 3-3OOft the propagation distance L 
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must be greater than from 10 to 105ft for most of the scattered energy to be dis- 
tinct. Thus, for the larger values of Lo, equation (27) is based on an over-estimate 
of the scattered energy and will over-estimate the shock thickness. To determine 
the thickness accurately for this case would require the use of (29). 

5. Calculation of shock thickness 

which gives a thickness based on maximum slope of 
The steady solution to the Burgers equation (27) is the classical Taylor solution, 

m T = 1 6 - ~ ~ ( ( , ~ + 7 , k ) ~ ) L ~ ~  Y 
Y+1 AP - 

for a shock of strength Ap. 
Hopf (1950) and J. D. Cole (1951) have presented a closed-form solution to the 

time-dependent Burgers equation, given an initial profile. This may be used to  
calculate the shock structure when a thin viscous shock (approximately a step 
function) enters a region of turbulence. The distance required for the steady 
thickness given by (30) to develop may also be estimated. The question of dis- 
tinctness becomes more critical for the high frequency components scattered 
from a thin shock, however, so the calculation of unsteady development must be 
regarded as approximate. 

Figure 3 shows the steady-state shock thicknesses and the thickness after a 
3000 ft layer for several values of e2((p + +)2) Lo, based on the values of e2 and Lo 
discussed above, and the steady thickness of a Navier-Stokes viscous shock. 
Also shown are several groupings of shock thicknesses measured from sonic- 
boom and explosion experiments. The choice and interpretation of the data are 
discussed by George & Plotkin (1971). Although the exact values of e2((p + 7,k)2)Lo 
for the various experiments are not known, the present theory is seen to give the 
correct order-of-magnitude predictions for thicknesses, while the Navier-Stokes 
predictions are several orders of magnitude smaller. 

6. Perturbations behind the shock 
Crow (1968, 1969) has shown that for a step-function incident wave 

Sp,, = ApH(LJ, where H ( [ )  = Heaviside step function, 

the mean-square iirst-order fluctuations due to scattering by turbulence in the 
Kolmogorov inertial subrange are 

(ST) = (h/hc)-g, (31) 

where 8, = Sepll/Ap, h = distance behind the shock front and h, is a length 
which depends on the properties of the turbulence and the propagation path 
length through it. As was discussed by Crow, these perturbations become un- 
reasonably large near the shock even if the viscous cut-off of the turbulent 
spectrum is accounted for. Enormous perturbations are predicted because of the 
very strong scattering of the high frequency Fourier components present in the 
discontinuous step-functionincident wave. If a finite-thickness shockis considered 
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then finite and reasonable maximum mean-square perturbations are predicted 
by Crows’ theory. 

Following Crow (1968), an incident wave of arbitrary structure can be repre- 
sented as a sum of infinitesimal steps: 

&plo is identified with the present P, see George (1971). The first scattering re- 
sponse to a unit step H ( h )  is Xl(h), so 

which, on subtracting (32), becomes 

(33) 

Taking the mean square of (33) gives 

To complete this calculation it is necessary to know the correlation 

( 4 ( h  - 7) Sl(h - 7’)h 

which has not been found. However, it is possible to find an upper bound by 
noting that 

(Sl(h - r )  Sl(h - 7’))  < (S2,(h - r))* (&(h - r’)p,  

the expression on the right representing perfect correlation. Using this in (34) 
leads to 

Using (31) for (52,) gives 

Provided that d8plo/dr is finite, this integral converges. This upper bound for 
( ( 8 ~ p ~ ~ ) ~ ) *  has been calculated for a shock of thickness T = he whose structure is 
in accordance with the steady solution to the Burgers equation (27), and also 
for a ramp shock structure of the same thickness. The envelopes for both shocks 
are shown in figure 4, along with (h/hc)-a for astep-function shock. At a distance 
of several T behind the shock the envelopes for both thickened shocks are close 
to (/&)-A, so (31) applies away from the shock front. Near the shock, the effect 
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FIGURE 4. Root-mean-square perturbations for a thickened shock of thickness T = h,, and 
(h,/h)& for a step-function shock. - , thickened shock; ---- , step-function shock. 

of finite thickness serves to ‘cut off’ equation (31). The details of the envelopes 
here differ for the two shock structures but the maximum perturbations are fairly 
close, so that it is the thickness and not the details of the shock structure that 
determines the magnitude of the largest perturbation. By scaling (36) it is easy 
to see that the maximum root-mean-square perturbation is of order (hJT)&, 
Generally, T > hc7 so that perturbations are smaller than those shown in figure 4. 

The above calculation is somewhat ad hoc, as it applies Crow’s analysis to a 
thickened shock without relating h, to T. The purpose was to show that the 
unreasonably large predictions near the shock front in Crow’s analysis are due to 
his use of a zero-thickness shock. Because Crow’s analysis applies only to a finite 
layer of turbulence (it is a first scattering analysis), a more proper approach 
would be to combine it with an unsteady thickening shock evolving from an 
initially thin viscous shock. Such a calculation has been performed by Cole & 
Friedman (197 1) for typical atmospheric conditions, with good qualitative agree- 
ment with experimental boom measurements. 

The physical model and analysis leading to the Burgers equation (27) predicts 
a steady shock structure after very long propagation paths through turbulence. 
This case is important for sonic booms near cut-off or blast waves near the ground. 
Calculation of perturbations behind a steady shock is difficult. Crow’s first scat- 
tering analysis, even when applied to a thickened shock, diverges for long dis- 
tances (Plotkin 1971~).  For long distances, more terms in the expansion (5) must 
be retained. The next term to be examined is Se3pI3. This represents third-order 
scattering, or second scattering of 8epll. Over long distances the fist-order 
perturbations themselves are attenuated by scattering. This can be accounted 
for by applying the decay operator (21) or (24) to the first scattered waves. Such 
an analysis has been carried out with a number of simplifying approximations 
by Plotkin (1971a, b). The upper bound on the maximum perturbation behind a 
steady shock propagating through unbounded turbulence were found to be of the 
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FIGURE 5. Root-mean-square perturbations on a 200ft N-wave; Ap/pm = + x 
L, = iooft. -, €2 = 10-5; ----, €2 = 10-7. 

order of the shock strength, which is consistent with much of the experimental 
data. Figure 5, taken from Plotkin (1971 b) ,  shows the envelopes for the upper 
bounds of root-mean-square perturbations on an N-wave propagating through 
unbounded turbulence. That analysis included several approximations, the most 
severe of which was that all re-scattered perturbations were assumed distinct. 
However, the analysis provides a consistent physical description of the bounded 
perturbations behind a steady thickened shock. 

7. Conclusion 
The effects of turbulence on propagation of weak shock and other thin pressure 

waves under certain conditions have been shown to include a mean dissipative 
effect due to the wave energy scattered out of the incident wave direction. The 
scattered waves eventually become distinct in phase from the incident wave and 
appear as perturbations behind the initial front. Crow’s method of calculating 
these perturbations is modified to account for the dissipative aspects of the scat- 
tering. 

This work was supported by National Aeronautics and Space Administration 
Grant NGR-33-010-054. 
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